

Status of Lithium-Ion Cell Certification at EaglePicher Technologies, LLC

By Jeff Dermott

Presented at: 2009 NASA Aerospace Battery Workshop Huntsville, AL November 17-19, 2009

- Lithium-Ion Timeline at EaglePicher
- Engineering Model Cell Data
- EaglePicher Cell Certification Plan
- Summary

- Fully funded by EaglePicher
- Designed for large cell construction
- Anode and cathode mixing rooms are separate and sealed
- Dedicated air handling for critical processes
- Coating room designed as class 10,000 cleanroom
- Cell assembly room: class 10,000 certified, -40°C dew point
- Semi-automated process control

Timeline of Lithium-Ion Activities

Technology Transfer, 62AH Cell

- LiCoO₂ Chemistry
 - > 52AH Nameplate (using 5/6 rule)
- Hermetically sealed container
 - Material: SS
 - > LASER weld construction
 - Crimped terminal design
- Terminals
 - Positive: Aluminum, Nickel plated
 - Negative: Copper, Gold plated
- Flat-plate electrode design
- Physical Properties:
 - > 1955 grams
 - > 7.9" Tall x 3.2" Wide x 2.22" Thick
- Specific Energy = 125 Whr/kg
- Energy Density = 266 Whr/L

Engineering Model Cells

- Used for facility run-in
- Cells E2 and E3 performing LEO cycling at 40%DOD
 - > LEO cycling continues
 - > Accumulated cycle count of 4,821 as of 01-Nov-2009
- Cells E8 and E9 used for variety of characterization tests
 - > Temperature characterization tests at C, C/2 & C/5 rates
 - > 7-Day Charge Retention
 - Cell DC Resistance Measurement.
 - Planned for Vibration & DOT with DPA in early December
- Cell E10 being used for various engineering tests
 - Planned for Vibration & DOT with DPA (w/E8 & E9)

E2, E3 LEO Life Testing

E2 LEO Life Testing

EaglePicher --

Cell Voltage and Current During 40%DOD Cycle

E2, E3 LEO Life Testing

E8, E9, E10 Capacity Testing

EaglePicher --

Average Discharge Capacity vs Temperature

E8, E9, E10 Charge Retention Test

EaglePicher --

7-Day Charge Retention Test Results

E8, E9, E10 DC Resistance Test

EaglePicher --

DC Resistance Data

- Cell lot will consist of 15 EPT, 5 USG Cells
- "Build to Print" qualified cell design
- Used to certify manufacturing capability at EaglePicher
- After activation and formation, lot will be subdivided
- Various tests will be performed in conjunction with USG supplied cells
- Successful completion of testing finalizes technology transfer

Certification Plan

EPT Certification Tests

- Capacity Tests, 20°C
 - > Charge
 - CC @ C/10 to 4.1V
 - CV @ 4.1V to C/100
 - Discharge
 - C/2 and C/5 to 3.0V
 - > Criteria: 62.5AH to 3.0V
- 7-day Charge Retention, 20°C
 - Charge
 - CC @ C/10 to 4.1V
 - CV @ 4.1V to C/100
 - Discharge
 - C/2 to 3.0V
 - > Criteria: 25mV max drop / 93% retained capacity

EaglePicher --

Vibration Tests

- ➤ Charge to 100% SOC
- Sine & Random Vibration
 - Discharge @ C/10
 - Monitor current and voltage
- Post-test capacity, charge retention, DC resistance

Thermal Exposure

- ➤ Charge to 50% SOC
- ➤ 2 temperature cycles, -10°C to 35°C
- Post-test capacity, charge retention, DC resistance

Sine Vibration Levels	
Frequency Hz	Acceleration g
10.0	12.7 mm (displaced amplitude)
24.2	15
34.5	15
36.0	20
55.0	20
57.5	7
100.0	7
sweep rate: 2 octaves / min	

Random Vibration Levels		
Frequency Hz	Power Spectral Density - g²/Hz	
20	0.1	
100	0.5	
1000	0.5	
2000	0.025	
g _{mas} = 26.9		
duration: 3 min per ax is		

- Overcharge Characterization @ 20°C
 - ➤ Charge @ C/10 to 3.7V
 - ➤ Discharge @ C/2 to 3.0V
 - Increment EOCV by 0.1V
 - > Repeat discharge
 - > Continue 0.1V increments to 5.1V or until cell fails
 - > Characterize capacity and resistance at each EOCV increment
- DC Resistance
 - ➤ Discharge @ C/5 to specified DOD (20, 50, 80%)
 - Open circuit for 30 minutes
 - Calculate resistance ΔV/ΔI
 - Criteria: 2.7 mΩ max

- 40% DOD LEO Cycling at 20°C
- DOD based on Nameplate Capacity of 52AH
- Charge
 - > CC @ 26A to 4.0V
 - > CV @ 4.0V to 0.5A or 54 minutes total charge time
- Discharge @ 34.67A for 36 minutes
- Continue to a minimum of 30,000 cycles
- Measure capacity and DC resistance
 - > @ 500 cycles
 - > @ 1000 cycles
 - ➤ 1000 cycle increments thereafter

- 60% max DOD accelerated GEO cycling at 20°C
 - DOD based on Nameplate Capacity of 52AH
- 1 cycle per day
- 45 day eclipse season
- 2 day solstice season with cell at 100% SOC
- Charge
 - > CC @ 2.6A to 4.0V
 - > CV @ 4.0V to 0.5A
 - > Open circuit until next discharge
- Discharge
 - \triangleright Rate = 26A
 - > Duration will vary during 45 day eclipse season (72 min. max)
- Continue to a minimum of 1,350 cycles
 - ➤ Measure Capacity & DC resistance after every 2 eclipse seasons

Summary

- Performance of EM cells currently meeting expectations
- EPT will complete certification cell testing in January 2010
 - > Finalizes facility certification for production of USG technology
- Life Tests will continue with EM and Certification cells
- Additional Li-Ion deliveries in 2010
 - Heritage cells to NSWC for industry testing
 - > Large format cells for Aircraft starter applications
 - Coatings for Medical applications

Acknowledgements

- Eric Quee, EPT
- James Bond, EPT